|
|
|

 Increasingly, researchers in many branches of science are coming into contact with Bayesian statistics or Bayesian probability theory. By encompassing both inductive and deductive logic, Bayesian analysis can improve model parameter estimates by many orders of magnitude. It provides a simple and unified approach to all data analysis problems, allowing the experimenter to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge.
This book provides a clear exposition of the underlying concepts with large numbers of worked examples and problem sets. The book also discusses numerical techniques for implementing the Bayesian calculations, including an introduction to Markov Chain Monte-Carlo integration and linear and nonlinear least-squares analysis seen from a Bayesian perspective. In addition, background material is provided in appendices and supporting Mathematica notebooks are available, providing an easy learning route for upper-undergraduates, graduate students, or any serious researcher in physical sciences or engineering.
Cambridge University Press, 2005, 468 S.
69,60 Euro
Hardcover
» Online Bestellen
» Weitere Titel
Lieferung, Versand und Rechnung erfolgen über unseren Partner amazon.de
In eigener Sache
Der Aufbau und die permanente Pflege dieser WebSite passiert nicht von allein. Damit wir einen (wenn auch geringen) Teil der dabei entstehenden Kosten abdecken können, sind wir auf die Provisionen aus Verkäufen von CD-ROMs und Büchern angewiesen. So kann jeder zum weiteren Aufbau dieser WebSite beitragen!

 |
 |

 
Warenkorb anzeigen (amazon.de)
|
|
|
|